Femtosecond Laser Processing of Materials for Defense Applications

Frank Roeske, Ed Roos and Jerry Benterou

Presented to

Materials Research Institute Seminar

November 8, 2000

Our femtosecond laser safely cuts energetic materials and metals with surgical precision

Cuts cold and clean

Cuts anything

Near-zero heat transfer

Minimal wastes

How a femtosecond pulse laser works

- ¥ Pulse width: 150 fs
- ¥ Average power: up to 3 W
- ¥ Peak energy: 1 mJ/pulse
- ¥ Peak power: 40 GW
- ¥ Repetition rate: 3.5 kHz
- ¥ Beam Diameter: 13 mm
- ¥ Wavelength: 810 nm

The laser consists of several modules

The laser is computer controlled with auto alignment system

How can the laser cut HE without thermal transfer?

- ¥ Heat is transferred by lattice vibrations
- ¥ Energy absorption occurs on a time scale comparable to a single lattice vibration
- Y Subsequent hydro expansion and cooling is also too fast for heat transfer
- Y Shock wave is intense but too brief to cause significant reaction

Thermal transfer to the HE is evident hwiltonger pulses (0.75a)

Laser Interaction with insulating material

Long pulse - cw - 10 ps

Avalanche ionization

Requires seed electron - threshold has large deviation

¥ Free electrons reach high density -

¥ Irreversible material breakdown occurs and ablation begins

¥ electrons absorb laser energy by collisions with ions and are heated to high temperature ¥ at the same time electrons transfer energy to the ions and lattice and the material is heated up ¥ the amount of heating during the laser pulse depends on the pulse duration and energy coupling coefficient

¥ absorbed energy leaves the laser focal volume via heat conduction.

¥ energy transfer from electrons to ions during laser-matter interaction is strong - large volume around the laser focus is melted and relatively small layer of material reaches vaporization temperature.

Short pulse - < 1 ps

Multiphoton ionization

Bound electrons absorb m photons simultaneously to become ionized

¥ interaction time is short

¥ electrons driven to much higher temperature and the ion or lattice temperature much lower ¥ subsequent electron-ion energy transfer takes place after the pulse is over and will heat ions to a much higher temperature than the long-pulse case ¥ A large fraction of the material in the interaction volume is vaporized, going through the melt phase very rapidly.

¥ The heat-affected volume due to conduction is much smaller and most of the energy is carried away by vaporization.

Ultrashort laser pulses will cut any material

Programmatic applications for fs lasers

- **¥** Energetic materials processing
- ¥ Scientific investigation
- **¥** Surveillance
- **¥ Micromachining**
- **¥** Demilitarization

We have a 4-axis-motion positioning system

We have the flexibility to cut small or large explosive samples

Energetic materials processing

We have demonstrated that we can cut and machine high explosives with a focused beam from a high-power, femtosecond laser with virtually no heat transfer to the explosive. This capability has interesting applications to the processing of energetic materials.

- Precision macining of HE components
- Elimination HE waste and HE-contaminated waste
- Reduction of pressingcosts and achievement of greater pellet uniformity by machining booster and detonator pellets from a larger pressing

The laser can make very fine cuts

Cuts are on the order of tens of microns

We demonstrated removal of relatively large amounts of material

Scientific Investigation

- Preparation of test specimes that are thinner than can be prepared by conventional machining.
- Drilling smalholes for insertion of optical fiber diagnostics
- Machiningsteps and grooves in the surface of test specimens
- Machiningsmall wedges of HE
- Machiningcontoured shapes
- Removing installation from detonator cables for probe attachment

Detonation velocity measurements

High-speed streak record of detonation breakout. Breakout time resolved to < 1ns

We laser drilled holes in 1-cm-thick explosives samples

- Y Non-trivial to drill small holes in explosives
- Y Useful for introducing wires and diagnostic probes in experiments

Small tantalum disks were cut using optical trepanning technique

¥ Previously the disks were formed by electronic discharge machining (EDM), a difficult And time-consuming process

¥ Femtosecond laser machining of these disks proved to be 100 times faster and have fewer rejects

Manufacture of Tantalum Disks

Laser Trepanned circles cut in single-crystal tantalum.
Small circles ~ 100 m diameter

Cut time 4 secs @ .1 watt ave. power. 50 m laser spo t size and fluence of 2.9 J/cm²

Finished 100 m
Diameter tantalum
Disks after polishing to
10 m th ickness

Surveillance

- Disassembly of energetic components
- Drilling access hees for gas sampling
- Cutting test specimes from larger charges
- Cutting cross-sections components for inspection

SEM of cut through a strip EBW header

SEM of cut EBW detonator header

SEM of cut through flat cable

Micromachined, safe-and-arm system

The DoD is very interested in micromachining tiny, mechanical, safe-andarm systems for use in advanced munitions. In combination with other micromachining techniques, fs lasers have many possibilities for use in this area.

Demilitarization

The fs laser can function as a precision cutting tool for demilitarization.

- ¥ No heat transfer to sensitive materials
- ¥ Will cut both metals and HE without causing reaction
- ¥ Minimal waste generation
- ¥ Possibility of reusing highvalue parts.

In early experiments, we cut through HE and metals in both directions

Cut through 1/2-mm steel substrate into HE sample (PETN)

That particular cut went through the 2mm HE sample (from back surface of substrate)

In later experiments, we cut through thicker HE and more reactive metals

We cut explosive components while preserving delicate internal structures

Material removal rates for shallow holes

Femtosecond laser cut through 1/8 inch of Stainless Steel

- •1 cm long cut required 108 minutes
- Average laser power was 2 Watts
- •Fluence was 3.6 J/cm²
- •Cut was done in atmosphere
- •Distance to target was
- 1-meter (1000mm)

Programmatic applications for fs lasers

- **¥** Energetic materials processing
- **¥** Scientific investigation
- **¥** Surveillance
- **¥ Micromachining**
- **¥** Demilitarization

